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HALLMARKS OF Al IN PRECISION ONCOLOGY
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BlOData-driven model in lung cancer: APOLLO11 use case
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APOLLO11 Study Design and Workflow

Broad inclusion criteria

Samples availability
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APOLLO11: data
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APOLLO11 Queries Implementation

@ Data collection and local storage @ Scientific queries proposal and discussion
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APOLLO 11 NETWORK

() Apollon

1l Progetto v La Rete

Unity is Strength

News Rassegna stampa

£ Jin B X

Domande frequenti Contatti

2021

Centri di ricerca italiani per strategie terapeutiche avanzate per il tumore al polmone

Apollo 11
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https://apolloll.network/
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48 Centri di ricerca avanzata
sul tumore al polmone

Creazione di una rete di centri italiani che si occupano di pazienti affetti da
tumore del polmone NSCLC avanzati gia trattati o candidati a ricevere una
terapia a base di ICI

I

Biobanche

Sviluppo di una biobanca multilivello nazionale registrata con impostazione e
armonizzazione delle procedure operative per la raccolta, la conservazione e
la spedizione dei campioni biologici.

APOLLO 11

FEDERATED NETWORK

S
Real world data
da tutti i centri attivi

v

Sviluppo di un database nazionale Real World per i pazienti affetti da tumore
del polmone trattati con TERAPIE INNOVATIVE (ad es. immunoterapia, terapie
target, anticorpi coniugati)

45

Intelligenza Artificiale

Creazione di un modello predittivo di intelligenza artificiale (Al) per
migliorare la previsione della risposta, portando in ultima analisi a una
migliore soprawivenza e qualita di vita dei pazienti oncologici
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MODERN Al

Computational resources

Computational resources % Massive unlabeled data
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s No use of data e Extensive data preparation and feature ® Limited by availability of labeled data o Quick adaptation to new tasks using

* Rigid engineering limited labeled data



LLMs and Foundation Models uni and multimodal

From uni to multimodal: A PANCANCER approach

Multimodal
Foundation Models

Modality-specific
Foundation Models

* Help us to maximize the use of

_ e  Generalist small datasets as extractors
Medical Language 5 neslegica
Radiology
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=& b « Help us to specialize the tasks
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@l% Medical Language
= Digital Pathology = .
Digta Patholoy @% * Al Agents: Interactive, adapted
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— Molecular Biology
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Molecular Biology Digital Pathology




SHIFT Al

GENERATIVE Al
PREDICIVE Al

AN

LLMs and FMs
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Al Agents

Al AGENTS
e Autonomous agent chooses
autonomously the Al models to solve
e Able to refine the actions through the
tool... adjustments



Al Agent

Agent-Layers Agent-Workflow

Perception

i ay Brain _
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[AI Agent] | Environment |

Ms, Jara, a 45-year-old never-
smoker, was diagnosed with stage

Knowledge
~ L ,

I1lA adenocarcinoma of the right lung Storage |
in March 2023 following workup for . | =
: Input data Data embedding
H . persistent dry cough. She underwent
Foundatlon l Generatlve AI concurrent chemoradiotherapy with E !
F—R cisplatin and pemetrexed, followed A E |
(LLMS: VISIOn_Language MOdEIS) by consolidation durvalumab for ‘ E M 1
months. Initial follow-up imaging w emory
showed partial response with no c 1 RA‘? system
nodal progression. n E
- . I N
Predictive Al / Specific Tools = Summary Leam
(QA, Image Captioning, etc.) : S ‘ ,
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Actions ‘I r Planning/ Reasoning
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Tools Predictive models

Knowledge Integration / RAG
(External Sources & Internal Data)
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Human-in-the-loop ——



https://doi.org/10.1038/541551-025-01363-2

Coordinated Al agents for advancing
healthcare

Michael Moritz, Eric Topol & Pranav Rajpurkar ™ Check for updates

S

Chest X-ray MR (- =y Insurance
= iges += =% contracts
A ) A
Namsmemams s & O .
Benfy

pathology | .
[eocay Radiologist Insurance advisor - » Monitored
Aol ‘- ." » biosignals
. o
. .
~ :
.
.
.
.
.
Carey
Care monitorer
Report
Reviewing Rehadilin
pathology appointments
results

myGP
General practitioner

Clint
Clinical-trials expert

images and video

MyGP (general practitioner)
Here is the daily photo of

Autonomous (Al independent) &
Assistive (Human in the loop)

MASH backend

Carey (care monitorer)

Continuing to monitor all hospital information
systems. No events or alerts overnight.
Patient-controlled anaesthesia use continues
to decrease. This morning there are discharge
orders and instructions pending.

s

Clint (clinical-trials expert)
D H 0 The patient is eligible for a trial using
ctDNA surveillance for recurrence.

Avery’s incision:

My Al care team

MyGP (general practitioner)

Good morning, Avery. You've been recovering
very well after surgery, and since you've been
able to eat, you should be discharged later today.

That's great! I'm feeling surprisingly well, all things
considered. | can't believe how small the incision is.

Dye (pathologist)
Final pathology is T2 NO —
no sign of tumour spread.

Preez (precision-medicine expert)

No further treatment is indicated at this point. | do
recommend close follow-up with imaging, initially for
three months. There is also an opportunity to participate in
a research study that uses a blood test to monitor for
recurrence and may help in the future with early detection.

Id like to explore it, if it could help someone else
going through this.

Ghank you, and Dr Inny, for helping me through this.

Dr Inny (colorectal surgeon)
Technology is an incredible tool, although at times it
can widen the distance | 1 us. My Al assistants

help me treat so many more patients than | ever
could before. Even surgery is assisted by a robot,
enabling operations that are otherwise impossible.
But you and | are still at both ends of control, which
we should remember, while it lasts.

Soon it may only be you.

MyGP (general practitioner)
And me!




GIGO: GARBAGE IN - GOLD OUT

, Machine Learning/Deep Learning

« Requires data curation and feature
engineering

« Machine learning. use supervised
methods

« Deep-learning. learn automatically

(end to end) with enough labeled data .

Garbage In Gold out

Massive unlabeled

cancer data
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cancer data resources S in real time
Model-centric Al Data-centric Al Agentic Al

ML model
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(Deep NN)

o

Customized model
architecture and
. manual curation
H of features for training
\

LLM
(text-only)

®
(images, omics, etc.)

a

Standardized model architecture,
pre-trained on massive unlabeled
datasets and and fine-tuned for
downstream tasks

o

s H
. Agents expand LLMs using H
Al models as tools and
reason autonomously in
order to complete
complex tasks

Arsela Prelaj, MD, PhD, Fondazione IRCCS Istituto Nazionale Tumori of Milan, Italy

Content of this presentation is copyrightand responsibility of the author. Permission is required for re-use.

Pillars of Foundation Models and Large Language Models

Ethical and regulatory

Technical Operational
Modality-specific Multimodality m Trustworthy Al g -
Data Feature ooa Adaptability 9y
modality 1 Embedding

Data Feature
modality embedding

—
D % ) Fairness .
Al regulation

| O _generatization ] o o

| @] Reliability — S -4
]

| O[] Functionality ] \A‘!.

Data privacy

— , Data Feature
» modality 2 Embedding
'

=

Scalability

.

Cancer costs

7 5B

Explainability

Feature
importance

Panel a: Garbage In Gold Out is the paradigm shift in oncology driven by FMs and LLMs. This
paradigm enhances the potential of FMs and LLMs in transforming cancer data, i.e., Garbage In,
into highly valuable insights, i.e., Gold Out . Panel b: Evolution of Al models in cancer research
from traditional model-centric Al, to data-centric Al (FMs and LLMs ) and very recently to Agentic
Al (autonomous Al Agent). Panel c: These pillars are requested for effective and safe development
and deployment in clinical oncology.

Corso et al. Under revision Nature Cancer
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TAILORING TREEATMENT
STRATEGIES: DELAY

H4. Patient outcome prediction
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Ongoing projects: analyzed 6078 pts with 10-based

CAR-T study

PALMARES Study
< 10:
Radiosphere study . e e 900 pts

Mesothelioma project

IO 50 pts

MeeTURO
SamurAl

Malva
1178 pts

|O Apollo1
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Physician Decision Support
Systems (PDSS) for
Immunotherapy

Integrating Predictive Al and Generative Al for clinical
decision making

A project funded by
the European Union




I3LUNG: A European and beyond project on Ly FLUN
Al, 10 and NSCLC G
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Goal: Develop a Data storage and Elaboration Platform (DESP) by
integrating Real world and multiomics data in NSCLC patients treated with immunotherapy with
the aim to produce a clinical decision-making tool using Al approaches
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I3LUNG: Patients Cohort
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I3LUNG: Platform and patients

Cancer clinical centers:
e | - INT - Milano, Italy
\ VHIO - Barcelona, Spain
SZMC - Jerusalem, Israel

UOC - Chicago, USA

MH - Athens, Greece

GHD - Grosshansdorf, Germany

Total number of
patients:
2843

Retrospective: 2425
Prospective: 419

Retrospective 207 2424 U p d ate d tO
April 2025

Unknown/not available




I3LUNG: tools, for PATIENTS AND DOCTORS

Patient oriented study

Goal: Quality of shared DM
and physician-patient
communication

Cohort 1: Without IPDAS Cohort 2: With IPDAS
100 patients 100 patients

X ?
W W

Outcome:
Impact of IPDAS on shared medical DM

[ E

Arsela Prelaj
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y Physician oriented study

Goal: Al impact on accuracy
and decisional process (HI vs
HI and Al)

Physicians

| Cohort 1: HI group | Cohort 1: Hl and Al
100 patients 100 patients

‘ Accuracy ‘ Accuracy
Decision fatigue Decision fatigue
Process Process

[ T IR S

Outcome:
Confirmation weather the combination of HI and Al perform
better respect to HI alone (target +15%)
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I3LUNG: Clinical Usability of the tool @”ﬁ If_!_UNG
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I3LUNG: tools, for PATIENTS AND DOCTORS

Patient oriented study

Goal: Quality of shared DM
and physician-patient
communication

Cohort 1: Without IPDAS Cohort 2: With IPDAS
100 patients 100 patients

X ?
W W

Outcome:
Impact of IPDAS on shared medical DM
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Goal: Al impact on accuracy
and decisional process (HI vs
HI and Al)

Physicians

| Cohort 1: HI group | Cohort 1: Hl and Al
100 patients 100 patients

‘ Accuracy ‘ Accuracy
Decision fatigue Decision fatigue
Process Process
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Outcome:
Confirmation weather the combination of HI and Al perform
better respect to HI alone (target +15%)
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I3LUNG: Co-Decision Making tool for patient
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I3LUNG: mobile app — QoL monitoring .»w I'LUNG
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Mobile app as a digital biomarker % PLUNG

Idea and Goal

NSCLC Early Detection Gap: Screening
mainly target smokers, leaving non-smokers
undiagnosed.
]: Late Diagnosis Issue: Most cases are
e _.i detected at advanced stages, limiting

N treatment options.

Cough as an Underutilized Biomarker
Potential for NSCLC Detection: Currently
unexplored, but promising for screening

Investigate Al-based cough analysis for
distinguishing NSCLC patients on
immunotherapy (10) treatment from healthy
individuals.

Cough samples
collected
through a
mobile app

I'LUNG

& K
E &

e - , Results
Dataset:

Chiara Giangregorio,
PhD student e 109 healthy controls

SVM 70% 92%

* 017 patients with stage llIHIVB NSCLC treated with 10

Workflow

0 e
. ML binary classifien
MSCLE ve healthy control

DATASET SPLIT S ’ rs
bt i LT .

0%

validat] o tradn

E0% EO0% ML binary classifier:

| NSCLE vs heatthy contral

Support vector Machine (SVM): Hyperparameter tuning on validation set
Convolutional Neural Network (CNN): Adam optimizer with binary cross entropy loss function
+ early stopping with 15-epoch patience

Healihy
=3

=

Potential of using
cough as a digital

]

Trua labal

'

Caneer

Cristina Licciardello, | 0, .
Research Fellow | 82% -2 b|omarker!
Giangregorio, CNN 95% 90% 100% — P 0
Licciardiello et al. freaceded
ELCC 2025 Model performances evaluated on test set for classical machine learning model SVM and CNN. Confusion matrix on test set for CNN
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The Era of Experience

Era of Simulation Era of Human Data

-

AlphaZero

AlphaGo

Atari ChatGPT

Attention on Reinforcement Learning

Era of Experience

Computer Use

2014 2016 2018 2020 2022 2024

Year

David Silver, Richard S. Sutton* Deep Mind June 2025

aouabijejul uewnyadns

- Al must move beyond
static human data.

- Continuous, real-world
experience is key.

- Grounded rewards from
the environment, not just
human feedback.

- Autonomous agents adapt
to the real world over time.
- Reinforcement learning
drives superhuman
capabillities.



Modeling The Patient Journey With RL '8

Aleksandra Zec,

PhD student
PATIENT STATE AGENT
(ENVIRONMNENT) . STATE
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&) .\é ~ Digital ' A
| M\ L\ ““ Pathology o3 4 55150118 0 S B S S :
CT/PET/MRI : FIDELITY and COMPREHENSIBILITY of EXPLANATION
scans :
Treatment and dosage
t Patient condition
Ethical concerns Surgery f) Chemotherapy
Rare comorbidities
' E ..~ Radiotherapy "}]f? Immunotherapy
i I T t th Next- th
/ Shiemotfierpy I \ o ,&- arget therapy &. ext-gen therapy
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CLINICIANS IN THE LOOP

Zec, Aleksandra, et al. "Open Problem: Leveraging Reinforcement Learning to Enhance Decision-Making in Oncology Treatments.,
ARLET workshop @ICML 2024



Mean Win Rate

Cost-analysis in the LLMs era: MedHELM
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Cost vs Mean Win Rate

Model [Provider]
. Claude 3.7 Sonnet (20250219) [Anthropic]
. Claude 3.5 Sonnet (20241022) [Anthropic]
@ DeepSeek R1 [DeepSeek]
B Gemini 2.0 Flash [Google]

@ Gemini 1.5 Pro (001) [Google] . .
. Llama 3.3 Instruct (70B) [Meta]
‘ 03-mini (2025-01-31) [OpenAl]
@ GPT-40 (2024-05-13) [OpenAl]
B GPT-40 mini (2024-07-18) [OpenAl] .
860 10'00 12b0 14I00 16‘00 IBbO
Cost (USD)

Overall, non-reasoning models (GPT-40
mini: $805, Gemini 2.0 Flash: $815)

had the lowest costs and decent win-rates
(0.39-0.42).

Llama 3.3 Instruct ($940) reached a 0.30
win-rate, while Gemini 1.5 Pro

($1,130) achieved 0.24.

In contrast, reasoning models cost more
DeepSeek R1 ($1,806) and 03-mini ($1,722)
but performed better (0.66 and 0.64).
Claude 3.5/3.7 Sonnet

($1,571/$1,537) offered a solid cost-
performance balance (~0.63 win-rate).

Bedi S et al. MedHELM: Holistic Evaluation of Large Language Models for Medical Tasks. June 2025 arxiv



European Interdisciplinary
Society of Artificial
Intelligence in

Cancer research.

Be a catalyst for collaboration

Truly effective Al integration hinges on the combined
expertise of a variety of research figures: medical

] oncologists, imaging specialists (nuclear) radiologists,
Founded in 19" Dec 2024 pathologists, physicists, bioinformaticians and Al
engineers.

SPEAK THE SAME LANGUAGE

)/ Build a multidisciplinary network

Arsela Prelaj Jakob Nikolas Kather Mireia“'cr:rispin Helena Linardou ESAC a|m§ t.oobr.'dge Strateg'c a.ll.lances W'th_ key
President President-elect General Secretary Treasurer European initiatives and scientific organizations to
amplify Al's impact in research, diagnostic and
oncology.

DELIVER Al CARE across Cancer Societies

Daniel Truhn Claes I:ﬁi:dstrém Raquel?érez-Lépez Loic \ieﬂingue

Comprehensive educational programs
Recognizing the need for specific expertise, ESAC
provides training opportunities, from webinars and
interdisciplinary conferences.

_

Julien Calderaro Vanj Miskovié Mihaela Aldea SUMMER SCHOOL IN CANCER RESEARCH

MASTER: Al IN CANCER RESEARCH
WEBSITE: https://esac-network.eu.

CONTACT US by e-mail: contact@esac-network.eu

CONNECTA



https://esac-network.eu/

JOIN TODAY !
EARLY BIRD REGISTRATION WITHIN AUGUST 2025

> We bring together EU opinion leaders in cancer Al, from multiple fields of expertise

> You gain access to cross-disciplinary expertise and collaborative opportunities

> You become part of a network with strong ties to all major international cancer care and research societies
> You can contribute to the ethical and impactful integration of Al into cancer research.

Join the Society

Become a Member

> Part|C|pat|0n |n Worklng groups Commlttees and prOJeCtS For researchers, clinicians, engineers and other stakeholders
> Access to members directory and network (WIP) e

> Voting rights in the General Assembly S
> Priority access to events, workshops, and fellowships jﬁj:jj;‘j;‘s”;*;j:jj;‘o’:;::;fand e

> Access to members-only webinars and training courses » gty to apply for leadership roles within the Socety

> Eligibility to apply for leadership roles in the WGs and Committees e e

Become o Junior Member

Become o Sponsor

> 30€/year for (early bird fee), 2-years discount
>

* 10€ per year for undergrad/postgrad students
* 20€ per year for PhD students/medical residents




First ESMO Al Conference

ESMO > Meeting Calendar

ESMO Al & Digital Oncology Congress 2025

ESMO - European Society for Medical ...
94.157 follower
3ore*®

@y #ESMOAI25: Join us in building an Al-ready
community, to make sure Al enhances-not
replaces-oncology expertise. Submit your... altro

Scientific Co-Chairs

® Mireia Crispin Ortuzar, Cambridge, UK
® Rudolf Fehrmann, Groningen, Netherlands
® Jakob Kather, Dresden, Germany

Mostra traduzione

4
ESESMO Al & DIGITAL '
ONCOLOGY

Annual Congress

Hours Minutes Seconds

BERLIN GERMANY
12-14 NOVEMBER 2025



AI Co N G R E SS Co-Local Organizers

Hibrid Event organized by:

Sistema Socio Sanitario g\@“" ‘“MTW”%
Fondazione IRCCS - B qRegione e :l POLITECNICO
Istituto Nazionale dei Tumori Lombardia %@éb_,,;ﬂéﬁ MILANO 1863

Memorial Sloan Kettering
Cancer Center

- GUSTAVE/
@ 35‘@;3&% 10 5 R USSY.

p | B CANCER CAMPUS /
MEETING ESAC 3 DRESDEN

GRAND PARIS
(European Interdisciplinary Society (((

for Al in Cancer Research)
AALBORG UNIVERSITY

B8 UNIVERSITY OF
¥ CAMBRIDGE UClI

School of
Medicine

T HARVARD

10§ UNIVERSITY
QQD Endorsed by:
7@ MAY [ASLC AS C(.\)

“ﬁg— Amencan Sooety 01'" Clinical Oncology



POLITECNICO
MILANO 1863

sistema Socio Sanitario
7] Fondazione IRCCS $ Regione
Istituto Nazionale dei Tumori Lombardia

Al-ON-Lab

http//:Ai-onlab.com
Contact Us for more info:

Arsela.prelaj@istitutotumori.mi.it
Adam.smith@istitutotumori.mi.it

@arselaprelaj.bsky.social

The Thoracic Oncology Team
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Al DEPLOYMENT

1.

High-Level Prediction Capabilities: Al now delivers accurate predictions at baseline across screening, diagnosis,
prognosis and prediction tasks.

Advanced RWD, Imaging & Genomics Analysis: Al enhances real-world data (RWD), image and genomics integration
improving biological insights (e.g.: from digital pathology to gene).

Automatic Data Extraction: Significant improvements in automated and structured data retrieval streamline workflows
by using NLP and LLMs.

Federated & Swarm Learning Techniques: Decentralized Al models ensure secure, privacy-preserving multi-
institutional collaborations.

New Quality of Life Monitoring through Cognitive Sensing: Al-driven mobile and wearable technologies provide real-
time, adaptive health monitoring, perform much better compared to PROMs and PREMSs.

Foundation Models & Generative Al: Cutting-edge advancements in LLMs and foundation models enable high-quality
analysis of complex, high-dimensional data.

Al-Powered Clinical Trial Optimization: Predictive analytics improve patient recruitment, endpoint selection, and
adaptive trial designs CLINICAL TRIAL MATCHING

In-Silico Drug Screening & Molecular Docking and Drug discovery: Al-powered simulations predict drug-target
interactions, reducing experimental costs and time.



Al more DELAY THAN DREAM

1. Privacy, Data Governance & Democracy: Ensuring compliance with data protection regulations while enabling secure
data sharing.

2. Trustworthiness, Fairness & Diversity: Addressing bias, transparency, and ethical considerations in Al models
3. Advancing Treatment Selection Tools: Improving Al-driven decision support systems for personalized medicine.
4. Model Explainability in the Era of Generative Al: Enhancing interpretability of complex Al-driven decisions.

5. Scalability of Multiomics Data Integration: Overcoming small dataset limitations for robust multi-omics (Dream?)

6. Longitudinal Al & Reinforcement Learning: Developing scalable models for sequencing prediction and continuous
learning (Dream?).

7. Synthetic Data for Genomics & Imaging: Validating the use of synthetic data in clinical trial design and drug discovery.
8. Al Agents & Workflow Integration: Optimizing the role of Al-powered autonomous systems in clinical care applications.

9. Computational Power & Cloud Resources: Addressing GPU limitations and cloud infrastructure challenges and the
investments that labs/institutions need to do (Dream?).

10. Clear educational path: we need to build next generation scientist, hybrid, brining together the TECNO and HUMANITY
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